Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 21

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Outlining zircon growth in a granitic pluton using 3D cathodoluminescence patterns, U-Pb age, titanium concentration, and Th/U; Implications for the magma chamber process of Okueyama granite, Kyushu, Japan

Yuguchi, Takashi*; Ito, Daichi*; Yokoyama, Tatsunori; Sakata, Shuhei*; Suzuki, Satoshi*; Ogita, Yasuhiro; Yagi, Koshi*; Imura, Takumi*; Motai, Satoko*; Ono, Takeshi*

Lithos, 440-441, p.107026_1 - 107026_14, 2023/03

 Times Cited Count:0 Percentile:0.02(Geochemistry & Geophysics)

We propose a new method for elucidating zircon growth in granitic plutons, based on variations in three-dimensional 3D cathodoluminescence (CL) patterns, U-Pb ages, titanium concentration, and Th/U ratios. We focused on the zircon growth processes in the Okueyama granite (OKG) in central Kyushu, Japan, to obtain interpretations of magma chamber processes that result in the formation of granitic plutons. The OKG consists of three lithofacies: biotite granite (BG), hornblende granite (HG), and hornblende granodiorite (HGD). To determine the 3D internal structure and growth pattern of a zircon crystal, we performed CL observations for multi-sections of the samples. Simultaneously, we also determined the zircon U-Pb age and titanium concentration of the center sections of the samples. The 3D distribution of the oscillatory zoning can be used to determine the crystal nucleus. The simultaneous determination of zircon U-Pb ages and Ti concentrations of the granite samples indicates the time-temperature (t-T) history of granitic magma before its solidification. The t-T histories of the BG, HG, and HGD represented similar cooling behaviors within the magma chamber: rapid cooling from the zircon crystallization temperature to the closure temperature of the biotite K-Ar system between 16 Ma and 10 Ma. The variations in the Th/U ratios against temperature also demonstrate a different trend at the boundary of approximately 670 $$^{circ}$$C. Fractional crystallization in the magma chamber progressed significantly at temperatures above 670 $$^{circ}$$C; below 670 $$^{circ}$$C, crystallization progressed slowly, indicating only minimal changes in the magma composition. The variations in the Th/U ratio against temperature in the BG, HG, and HGD portrayed common tendencies, indicating the same behavior in the progression of fractional crystallization among the three lithofacies, which in turn, represented the same behavior within the entire magma chamber.

Journal Articles

Simultaneous determination of zircon crystallisation age and temperature; Common thermal evolution of mafic magmatic enclaves and host granites in the Kurobegawa granite, central Japan

Yuguchi, Takashi*; Yamazaki, Hayato*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Suzuki, Satoshi*; Ogita, Yasuhiro; Sando, Kazusa*; Imura, Takumi*; Ono, Takeshi*

Journal of Asian Earth Sciences, 226, p.105075_1 - 105075_9, 2022/04

 Times Cited Count:4 Percentile:49.4(Geosciences, Multidisciplinary)

Simultaneous determination of the U-Pb age of zircon and concentration of titanium in a single analysis spot, using inductively coupled plasma mass spectrometry with laser ablation sample introduction, produces paired age and temperature data of zircon crystallisation, potentially revealing time-temperature ($$t-T$$) histories for evolved magma. The Kurobegawa granite, central Japan, contains abundant mafic magmatic enclaves (MMEs). We applied this method to evaluate MMEs and their host (enclosing) granites. Cooling behaviour common to both MMEs and host rocks was found between 1.5 and 0.5 Ma. Rapid cooling from the zircon crystallisation temperature to the closure temperature of biotite K-Ar system was within $$sim$$1 million year. Combining the obtained $$t-T$$ paths of MMEs and host rocks with petrological information can provide insights into magma chamber processes. This suggests that MME flotation, migration, and spread through the magma chamber ceased at 1.5-0.5 Ma, indicating the emplacement age of the Kurobegawa granitic pluton, as no large-scale reheating episodes have occurred since then.

Journal Articles

U-Pb ages of zircons from metamorphic rocks in the upper sequence of the Hidaka metamorphic belt, Hokkaido, Japan; Identification of two metamorphic events and implications for regional tectonics

Takahashi, Yutaka*; Mikoshiba, Masumi*; Shimura, Toshiaki*; Nagata, Mitsuhiro; Iwano, Hideki*; Danhara, Toru*; Hirata, Takafumi*

Island Arc, 30(1), p.e12393_1 - e12393_15, 2021/01

 Times Cited Count:2 Percentile:17.26(Geosciences, Multidisciplinary)

The Hidaka metamorphic belt is an excellent example of island-arc-type crust, and in this belt the metamorphic grade increases westwards from unmetamorphosed sediment up to the granulite facies. The metamorphic age of the belt had previously been considered to be ca. 55 Ma. However, zircons from the granulites in the lower sequence have given U-Pb ages of ca. 21-19 Ma and a preliminary report on zircons from pelitic gneiss in the upper sequence gave a U-Pb age of ca. 40 Ma. In this paper we provide new U-Pb ages for zircons from the pelitic gneisses in the upper sequence in order to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean $$^{206}$$Pb/$$^{238}$$U ages and 2 sigma errors for zircons from biotite gneiss in the central area of the belt are 39.6 $$pm$$ 0.9 Ma for metamorphic overgrowth rims and 53.1 $$pm$$ 0.9 Ma for the youngest inherited detrital cores. The ages of zircons from cordierite-biotite gneiss in the southern area are 35.9 $$pm$$ 0.7 Ma for overgrowth rims and 46.5 $$pm$$ 2.8 Ma for the youngest detrital cores. These results indicate that the metamorphism of the upper sequence took place at ca. 40-36 Ma, and that the sedimentary protolith was deposited after ca. 53-47 Ma. These metamorphic ages are consistent with the reported ages of ca. 37-36 Ma plutonic rocks in the upper sequence, but contrast with the ca. 21-19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude, that the upper and lower metamorphic sequences developed independently but became coupled before ca. 19 Ma as a result of dextral reverse tectonic movements, as indicated by the intrusion of ca. 19-18 Ma magmas, possibly generated in the lower sequence, into the upper sequence.

Journal Articles

Simultaneous determination of zircon U-Pb age and titanium concentration using LA-ICP-MS for crystallization age and temperature

Yuguchi, Takashi*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Ito, Daichi*; Ogita, Yasuhiro; Yagi, Koshi*; Ono, Takeshi*

Lithos, 372-373, p.105682_1 - 105682_9, 2020/11

 Times Cited Count:3 Percentile:14.2(Geochemistry & Geophysics)

Simultaneous determination of zircon U-Pb age and titanium concentration for a single analysis spot gives both the crystallization age and temperature. The crystallization age and temperature pairs in granitic zircons map the time-temperature ($$t-T$$) path of granitic magma before its solidification. In laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis, it is challenging to quantitatively analyse a low level of titanium concentration. This study employed two approaches using a Quadrupole mass spectrometer equipped with a collision/reaction cell (CRC). The methods were applied to zircon samples of the Kurobegawa granite (KRG), the Okueyama granite (OKG), the Toki granite (TKG), and the Tono plutonic complex (TPC) and provided U-Pb ages and titanium concentrations consistent with previous studies. The crystallization ages and temperatures collected from individual analysis spots of zircon samples in the KRG, OKG, TKG, and TPC are plotted in the $$t-T$$ diagrams and enable us to characterize the rapid cooling paths at thermal conditions of zircon crystallization at the sampling sites.

Journal Articles

U-Pb dating of calcium carbonate using LA-ICP-MS

Yokoyama, Tatsunori

Isotope News, (764), p.11 - 14, 2019/08

no abstracts in English

Journal Articles

Zircon U-Pb and Fission-track ages for the Ohta Tephra in the Pliocene Tokai Group, Central Japan

Ueki, Tadamasa; Niwa, Masakazu; Iwano, Hideki*; Danhara, Toru*; Hirata, Takafumi*

Chishitsugaku Zasshi, 125(3), p.227 - 236, 2019/03

no abstracts in English

Journal Articles

U-Pb dating of calcite using LA-ICP-MS; Instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging

Yokoyama, Tatsunori; Kimura, Junichi*; Mitsuguchi, Takehiro; Danhara, Toru*; Hirata, Takafumi*; Sakata, Shuhei*; Iwano, Hideki*; Maruyama, Seiji*; Chang, Q.*; Miyazaki, Takashi*; et al.

Geochemical Journal, 52(6), p.531 - 540, 2018/12

 Times Cited Count:17 Percentile:65.79(Geochemistry & Geophysics)

Oral presentation

A Survey on new standard materials for U-Pb dating of carbonate using LA-ICP-MS

Yokoyama, Tatsunori; Kokubu, Yoko; Murakami, Hiroaki; Watanabe, Takahiro; Hirata, Takafumi*; Sakata, Shuhei*; Danhara, Toru*; Iwano, Hideki*; Maruyama, Seiji*; Miyazaki, Takashi*; et al.

no journal, , 

Chronological and geochemical studies of carbonates, which are commonly found as fracture filling minerals in rocks, can provide information about geochemical conditions present during formation including in deep subsurface environments. A dating technique for the carbonates using laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is still immature partly because of a lack of a consensus international carbonate standard for the in-situ dating technique. In this study, we performed a survey on the carbonate standard materials that may be suitable for high precision U-Th-Pb dating using LA-MC-ICPMS. We examined carbonate standard materials JCp-1 and JCt-1 issued by the Geological Survey of Japan (GSJ). Based on solution-based bulk analysis using MC-ICP-MS, heterogeneities in Pb isotope compositions were confirmed. Nevertheless, the 206Pb-based isotopic compositions were all within 1.2 per mill variations acceptable for a standard used for age determination using LA-MC-ICPMS. Additional tests on the heterogenities in U-Th-Pb compositions of the carbonate standards along with determinations of other trace elements using a 2D imaging LA-ICP-MS are ongoing. Examinations on both natural standards and synthetic standards are ongoing for further efforts in determination of the standard suitable for U-Th-Pb dating of carbonates.

Oral presentation

Searches for reference materials for LA-ICPMS U-Pb dating of carbonates

Yokoyama, Tatsunori; Kokubu, Yoko; Mitsuguchi, Takehiro; Murakami, Hiroaki; Hirata, Takafumi*; Sakata, Shuhei*; Danhara, Toru*; Iwano, Hideki*; Maruyama, Seiji*; Chang, Q.*; et al.

no journal, , 

no abstracts in English

Oral presentation

U-Pb dating of calcium carbonate using LA-MC-ICPMS

Yokoyama, Tatsunori; Kokubu, Yoko; Mitsuguchi, Takehiro; Murakami, Hiroaki; Hirata, Takafumi*; Sakata, Shuhei*; Danhara, Toru*; Iwano, Hideki*; Maruyama, Seiji*; Miyazaki, Takashi*; et al.

no journal, , 

Chronological and geochemical studies of calcium carbonates can provide precious information for changes in geochemical condition in deep geological environments. Because the carbonate can be found as common filling minerals in rocks, age zoning and spatial distribution of chemical composition in the carbonate could be a wide-use indicator to reconstruct the past environmental changes. Calcite and other carbonate materials have been dated by Isotope Dilution-Thermal Ionization Mass Spectrometry. On the other hand, a few of U-Pb dating studies in a micro scale area (less than 10 micrometer) such as using laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) has been conducted on the carbonate. The U-Pb dating technique for the carbonates using LA-MC-ICPMS is still immature partly because of a lack of consensus international carbonate reference materials for the in-situ dating technique. In order to solve this problem, we performed a survey on the carbonate reference materials that may be suitable for high precision U-Pb dating using LA-MC-ICPMS. Additionally, we conducted experiments to make compositionally homogeneous carbonate (calcite) reference materials.

Oral presentation

Zircon U-Pb dating and fission track age of a Pliocene Ohta Tephra in the Tokai Group

Ueki, Tadamasa; Niwa, Masakazu; Yonaga, Yusuke; Iwano, Hideki*; Danhara, Toru*

no journal, , 

no abstracts in English

Oral presentation

Zircon U-Pb dating of Aoki Granite in the Nishina Mountains, northern Japan Alps

Ueki, Tadamasa; Yokoyama, Tatsunori

no journal, , 

no abstracts in English

Oral presentation

Technical developments of the U-Pb dating of carbonates using LA-ICP mass spectrometry

Yokoyama, Tatsunori; Kokubu, Yoko; Mitsuguchi, Takehiro*; Murakami, Hiroaki; Hirata, Takafumi*; Sakata, Shuhei*; Danhara, Toru*; Iwano, Hideki*; Maruyama, Seiji*; Chang, Q.*; et al.

no journal, , 

no abstracts in English

Oral presentation

Synthesis and homogeneity evaluation of reference calcite for U-Pb dating of carbonates

Miyajima, Yusuke*; Saito, Ayaka*; Kagi, Hiroyuki*; Yokoyama, Tatsunori; Hirata, Takafumi*

no journal, , 

no abstracts in English

Oral presentation

Synthesis of calcite reference materials for in situ U-Pb dating through crystallization from amorphous calcium carbonates

Miyajima, Yusuke*; Saito, Ayaka*; Kagi, Hiroyuki*; Yokoyama, Tatsunori; Hirata, Takafumi*

no journal, , 

Calcium carbonates are ubiquitously present throughout the Earth history as animal shells, speleothems, fault-related vein fillings, and hydrothermal or cold-seep precipitates. Direct dating of carbonates provides valuable information on paleoenvironmental change, tectonics, and fluid and material cycling. U-Pb dating using high spatial-resolution LA-ICP-MS is a key technique to date natural carbonates. In situ U-Pb dating by LA-ICP-MS needs matrix-matched reference materials to correct matrix-dependent elemental fractionation in LA-ICP-MS. Roberts et al. (2017) demonstrated that a natural calcite cement WC-1 is suitable as a calcite reference material. However, the WC-1 calcite has an inhomogeneous distribution of U and Pb and lacks concordance in the U-Pb system. In this study, we synthesized novel calcite reference materials with homogeneous U and Pb concentrations and isotope ratios. We incorporated U and Pb into calcite through heat-induced crystallization from U, Pb-doped amorphous calcium carbonate (ACC). The homogeneity of the U/Ca and Pb/Ca ratios in the synthetic calcite was generally better than 8% and 13%, respectively, in relative standard deviation. The $$^{207}$$Pb/$$^{206}$$Pb ratio of the synthetic calcite was homogeneous within ~1% errors, whereas the $$^{238}$$U/$$^{206}$$Pb ratio was less homogeneous (3%-11% errors). To test the usability of the synthetic calcite, we dated WC-1 using the synthetic calcite for correction of elemental fractionation. We calculated the nominal $$^{238}$$U/$$^{206}$$Pb ratio in the synthetic calcite from its U and Pb concentrations. We then obtained the fractionation factor to correct bias between the isotope ratios and the nominal value. We could accurately date WC-1 with an ~3% precision. If the isotopic compositions of the synthetic calcite are certified by isotope-dilution technique, we could date natural carbonates with $$<$$10% precisions using the synthetic reference calcite.

Oral presentation

An Analytical technique for simultaneously estimating crystallization age and temperature of zircon using LA-ICP-MS

Yokoyama, Tatsunori; Yuguchi, Takashi*; Sakata, Shuhei*; Ishibashi, Kozue*; Ogita, Yasuhiro*; Ito, Daichi*; Ono, Takeshi*; Kagami, Saya; Mitsuguchi, Takehiro; Sueoka, Shigeru

no journal, , 

Dating and trace elements analysis of zircons provide us the evidences of past thermal history about their growth events, such as timing and temperature of magmatism and crystallization. In granitic rocks, because the proposed closure temperature of zircon U-Pb ($$>$$900 $$^{circ}$$C) is often higher than crystallization temperature of the zircon, the zircon U-Pb age means the timing of crystallization. To clarify the growth history of granitic pluton, Yuguchi et al. (2016) performed the observation of internal structure of zircon (collected from the Toki granite, central Japan) using cathodoluminescence, deriving crystallization temperature and age using Ti-in-zircon thermometry and U-Pb dating. It is important to discuss the emplacement by such an approach to understand the history of upheaval and exhumation of igneous complex. In this study, for simultaneously estimating crystallization age and temperature of zircon, we performed U-Pb isotopic analysis and quantitative analysis of Titanium, in the same position of zircon, using LA-ICP-MS after the cathodoluminescence observation. As preliminary experiments, we analyzed zircons collected from Japan (e.g., Okue, Tono, Toki and Kurobegawa granites) to estimate their thermal history. We could estimate the crystallization ages and temperatures of zircons of Okue (556-946$$^{circ}$$C in 11.1-16.1 Ma), Tono (613-901$$^{circ}$$C in 110.2-127.4 Ma), Toki (575-734$$^{circ}$$C in 69.4-79.9 Ma) and Kurobegawa (636-779$$^{circ}$$C in 0.46-1.85 Ma), respectively.

Oral presentation

The Origin of Hida belt; Lu-Hf and U-Pb systematics of zircon

Nagata, Mitsuhiro*; Yokoyama, Tatsunori; Kagami, Saya; Oto, Shigeru*

no journal, , 

no abstracts in English

Oral presentation

Simultaneous determination of zircon U-Pb age and titanium concentration using LA-ICP-MS; Case studies of the Kurobegawa granite, the Toki granite and the Tono plutonic complex

Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Ito, Daichi*; Ogita, Yasuhiro; Yagi, Koshi*; Ono, Takeshi*; Yuguchi, Takashi*

no journal, , 

no abstracts in English

Oral presentation

Simultaneous determination of zircon U-Pb age and titanium concentration using LA-ICP-MS; A Case study of the Okueyama granite, Kyusyu, Japan

Ito, Daichi*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Ogita, Yasuhiro; Yagi, Koshi*; Ono, Takeshi*; Yuguchi, Takashi*

no journal, , 

no abstracts in English

Oral presentation

Intrusive and emplacement process of the Tono plutonic complex; Constraints from dating and isotopic analysis of zircons

Ogita, Yasuhiro; Sando, Kazusa*; Ishibashi, Kozue*; Sakata, Shuhei*; Ono, Takeshi*; Suzuki, Satoshi*; Yokoyama, Tatsunori; Kagami, Saya; Nagata, Mitsuhiro; Yuguchi, Takashi*

no journal, , 

no abstracts in English

Oral presentation

Zircon growth process in granitic pluton by 3D cathodoluminescence patterns, U-Pb ages, titanium concentration, and Th/U ratios; Case study of the Okueyama granite, Kyushu, Japan

Yuguchi, Takashi*; Ito, Daichi*; Yokoyama, Tatsunori; Sakata, Shuhei*; Suzuki, Satoshi*; Ogita, Yasuhiro; Yagi, Koshi*; Imura, Takumi*; Motai, Satoko*; Ono, Takeshi*

no journal, , 

This study proposes a new method for elucidating zircon growth processes in the Okueyama granitic pluton, Kyushu, Japan. Our method, which combines 3D growth patterns, U-Pb ages, titanium concentration, and Th/U ratios, contributes to the petrology and mineralogy to understand the growth of zircon crystals within a magma chamber. Simultaneous determination of zircon U-Pb ages and titanium concentrations for the granite gives the variations in the temporal and thermal conditions during zircon growth, thus, developing a t-T history of the granitic magma before its solidification. The simultaneous determination of zircon U-Pb ages and Ti concentrations in the granite also enable us to associate the Th/U ratio with the crystallization temperature. Therefore, the decrease in zircon Th/U ratios as decreasing the temperature indicates the progression of fractional crystallization as the cooling of the magma chamber.

21 (Records 1-20 displayed on this page)